Савченко Е.М. - Информационные компетентности на уроках математики





Информационные компетентности на уроках математики
Меню сайта



Категории
Подготовка к ЕГЭ, часть С [17]
Моим ученикам [21]

Календарь
«  Декабрь 2016  »
ПнВтСрЧтПтСбВс
   1234
567891011
12131415161718
19202122232425
262728293031

Форма входа


Опросы
Кто посещает наш сайт?
Всего ответов: 4721

Статистика
Рейтинг@Mail.ru
Geo Visitors Map
Онлайн всего: 10
Гостей: 10
Пользователей: 0

Сегодня нас посетили


Комментарии: 2052
Форум: 26/285
Гостевая книга: 92

Поиск

Кнопка сайта



Приветствую Вас, Гость · RSS 11.12.2016, 11:02

Презентация педагогического опыта.

Цели работы. Представить алгоритмы применения программных продуктов как средство формирования ключевых компетентностей обучающихся на уроках математики.  

Начиная с 5 класса, я провожу уроки математики и внеклассные занятия в компьютерном классе. Такие занятия развивают не одну, а группу компетентностей обучающихся. Но чтобы формировать компетентности, необходима система работы. Я покажу несколько примеров, чтобы у вас сложилось понимание, что такая работа должна быть представлена в практике учителя не единичными случаями, а в системе. Я планирую 2-3 занятия в компьютерном классе в течение учебного года. Подбираю программные продукты, чтобы дети могли поработать за персональным компьютером.

Дети работают в микрогруппах, что, конечно, формирует коммуникативные качества личности ребенка. При распределении по группам обязательно учитываю личностные качества каждого ребенка. Формируя маленькие группы, я решаю и воспитательные цели урока, когда мне надо подружить мальчиков с девочками или поссорившихся детей. Или решаю развивающие задачи, объединяя в группу детей с разным уровнем компьютерной грамотности.

Большой проблемой для учителя остается подбор программных продуктов. Несмотря на то, что их много! В этом и трудность. Просмотреть огромный пласт программных продуктов в сети Интернет и на CD-дисках требует больших временных затрат. Поэтому, особенно ценно поделиться опытом уже использованных продуктов, обменяться ссылками. Я представлю несколько бесплатно распространяемых ресурсов, которые я применяла на уроках. Хочу обратить ваше внимание, что продукты, которые вы будете загружать на школьные ПК должны быть именно бесплатными или демоверсиями.

(1) Программа «Координатная плоскость».  Программа для отработки навыков работы с координатной плоскостью. В свое время я ее скачала бесплатно. Теперь ее можно купить здесь: http://www.informatik.kz/prog9.htm

С этой программой дети работают на уроке в компьютерном классе. Работают в парах и даже по три человека за компьютером. Т.е. формируется коммуникативная компетентность. Интерфейс программы доступен и понятен. В программе есть множество файлов с различными изображениями. Программа работает как тренажер, т.е. не дает ребенку совершить ошибку. Если точка по указанным координатам обозначена на плоскости верно, то появляется мальчик и веселый звук даст нам понять "Верно". Делаем новый шаг и вызываем следующую точку. Если ученик не верно указывает мышью очередную точку, то появится девочка и звуковой сигнал об ошибке. Пока ребенок не отметит точку правильно следующая точка не появится.

В определенный момент работы, дети начинают искать точки уже на уровне интуиции, ощущая линии фигуры. Сначала мне показалось, что это «слабое звено» в программе. Но потом я решила, что это даже хорошо! Ведь скучно искать несколько десятков точек по координатам! Действительно интересно, включить свою интуицию, предугадать линию следующего отрезка, видеть симметрию рисунка (а это уже пропедевтика будущих уроков геометрии).

   

[Кликните по изображению для увеличения рисунка]

При выполнении таких практических работ на бумаге, дети часто делают ошибку: сначала отмечают все точки, а затем пытаются их соединить. Рисунка не получается. Поработав с программой, эти дети заявили:

- Наконец-то я понял, что значит «последовательно» соединить точки отрезками.

После этого урока я предложила детям творческую работу: изобразить, используя координаты точек, контуры какого-либо животного. Творческие работы были очень интересными. В 6 классе традиционно проходит конкурс «Рисуем на координатной плоскости». Дети рисуют на бумаге или в PowerPoint. Конечно, приветствуется собственная авторская работа. Работа Степанова Максима "Динозавр" - это одна из многих авторских работ. Надо сказать Максим не блистал на математике. Но здесь он смог проявить себя! Я поощрила его, добавила в программу «Координатная плоскость новый файл «Динозавр». Ребенок был просто счастлив и окрылен. А вот еще пример работы. Файл "Половинка совы" необходимо было дорисовать.

   

Лучшие работы использованы в оформлении стенда в кабинете. А работа победителя пополнила архив файлов электронного практикума «Координатная плоскость». Ведь программа хороша тем, что вы можете пополнить ее новыми работами, «закодированными» в виде координат в программе Блокнот. И новые поколения школьников будут работать с изображениями, составленными вашими шестиклассниками.  

(2) Программа для создания пазлов  Jigs@w Puzzle Promo Creator

Для внеклассных занятий мы применяем различные игровые программы. Например, вот эти пазлы я использовала на интеллектуальном марафоне. Эйлер и Ньютон [ Скачать с сервера (341.3Kb) ], [ Скачать с сервера (311.3Kb) ] 

Создать новый пазл можно в течение нескольких секунд. Найти программу вы можете через поисковик. Есть более новые версии, где реализованы новые "фишки":  выбор формы линий разрезов и количество пазлов. Несомненно, что эта работа развивает мелкую моторику руки, пространственное восприятие графического изображения. И, конечно, технику работы с мышью: щелчок, двойной щелчок, метод «тащи и бросай». Можно каждую деталь вращать, зажав ЛКМ. 

(3) «Математический конструктор Версия 2.0», ООО «1С-Паблишинг», 2007.    CD - диск

Алгоритмы использования этой программы очень разнообразны. Мы с детьми в компьютерном классе использовали ее для геометрических построений на уроках информатики. Готовые динамические модели применяю на уроках геометрии. Цель работы применения моделей: исследование свойств геометрических фигур. Просмотрев множество примеров, мы выдвигаем гипотезу, а затем ее необходимо доказать. Провести исследование на уроке, используя обычный инструментарий ученика – это всегда требует затраты времени.

Примеры.

А) Исследование свойств параллелограмма.

На динамической модели параллелограмма обозначены все углы и рядом с моделью записаны результаты измерений градусной меры углов. Фигура динамическая, т.е. «потянув» за любую вершину мы можем изменить параллелограмм. Одновременно изменяются и значения углов, но при этом градусная мера противолежащих углов остается одинаковой. Конечно, это замечают дети и без труда выдвигают гипотезу о свойстве противолежащих углов параллелограмма. Остается выполнить доказательство.

Аналогичная модель составлена для свойства диагоналей параллелограмма. «Потянув» за одну из вершин четырехугольника, получаем новые параллелограммы. Без труда подмечаем, что изменяются и размеры отрезков, но отрезок СО остается равным ОА, НО=ОВ. Выдвигаем гипотезу. Доказываем, используя теоретические знания по геометрии, что это свойство выполняется для любого параллелограмма. 


Б) Теорема о сумме углов треугольника. В рабочей области программы построен треугольник, рядом выписаны градусные меры всех его углов. Треугольник динамичен, его форму можно изменить «потянув» за любую из вершин. Значения углов изменяются.


Прошу детей устно найти сумму углов тупоугольного треугольника. Затем, «превращаю» треугольник в остроугольный. На экране изменились и величины углов. Опять прошу сосчитать сумму. Сумма получается достаточно точной: 180 или 179. Поэтому, гипотеза о том, что сумма углов треугольника всегда равна 180, рождается быстро. Предлагаю детям закончить с экспериментами, сформулировать гипотезу и выполнить доказательство.

В) Динамические модели: треугольник и описанная окружность, треугольник и вписанная окружность.

Можно мгновенно менять вид треугольника: остроугольный, прямоугольный, тупоугольный. Дети замечают, что центр вписанной окружности лежит всегда во внутренней области треугольника.

Центр описанной окружности около остроугольного треугольника лежит во внутренней области, для тупоугольного треугольника – во внешней области. Для прямоугольного треугольника центр описанной окружности расположился на гипотенузе. Предположили, что на середине… Проверили этот факт, выполнив измерения с помощью инструментов программы.  

(4) Программа для построения графиков.

Я применяю разные программы.  Например, очень хорошая программа есть на сайте http://vitek-d.narod.ru/  и бесплатно распространяется.

Если мне необходимо быстро провести исследование о расположении графика прямой пропорциональности в системе координат и выяснить, как зависит положение прямой от углового коэффициента в аналитической записи уравнения прямой. Рассматриваем группу графиков: y=x, y=1,5x, y=3x, y=4,8x,   y=0,8x,   y=0,5x, y=0,3x,  y=0,1x. Затем, рассматриваем группу графиков с отрицательными коэффициентами. Делаем выводы.

Исследование взаимного расположения графиков линейных функций. В каком случае графики будут параллельны? Я даю детям несколько формул, они вводят их в программу и делают выбор тех, которые параллельны. Не составит труда подметить, что в формулах этих функций равные коэффициенты. Или я прошу найти среди группы графиков те, которые перпендикулярны. Построив и выбрав формулы для перпендикулярных графиков, можно подметить, что произведение угловых коэффициентов равно -1.

Интересные исследования можно провести с линейной, квадратичной функцией.

Скриншот программы. 



(5) GRAN-2D - среда динамической геометрии.

Для уроков в компьютерном классе я использовала демоверсию программы для построения графиков Gran 2D. Скачать можно здесь http://soft.mail.ru/program_page.php?grp=7252&ver=8256  

Эту программу я использовала на уроке для повторения разных видов графиков, преобразований графиков, области определения функций и т.д. Ученику необходимо было грамотно ввести функцию на языке, понятном для программы. Например, квадратичную функцию надо ввести следующим образом (x-4)^2-1. Для степенной функции вводится выражение (х+2)^(-0.5). Функция квадратного корня: Sqrt(x-2)+2

Но сложности были не в «переводе» аналитической записи функции на понятный для программы язык. Проблемы начались, когда мы начали работать с группой функций, заданных не на всей области действительных чисел. А в программе по умолчанию установлен промежуток (-8; 8). Предвидя, что на группе этих функций будут проблемы, я попросила детей сначала найти область определения для каждой функции, а затем вводить в программу. Результаты оформили в таблицу:


Ученик ввел формулу (2) и получил безобразный график, т.к. по умолчанию программа построила график на промежутке (-8;8)! Затем, исправил промежуток (2; 8) и получил правильный ответ и красивый график.

   

Другой ученик ввел формулу (3) и получил уродливый график, был крайне удивлен увиденным. "Что это?!". Я предложила посмотреть правильно ли он задал промежуток для построения графика. Ученик исправил промежуток (-0,999; 8) и получил красивую ветвь графика. Мне очень понравилась эта программа. Ученик не просто вводит формулу и видит график, но приходиться вспомнить и повторить область определения функций.

         

Файлы, которые мы с детьми делаем на практических занятиях или дома, затем используем на уроках. Например, мы использовали эту программу для построения графика функции у=sinx. Детям были даны задания построить фрагменты графиков, заданных на промежутках.

  1. Построить график функции у=sinx на промежутке [0;].
  2. Построить график функции у=sinx на промежутке [-;0].
  3. Построить график функции у=sinx на промежутке [; 3].
  4. Построить график функции у=sinx на промежутке [-3; -].

На уроке мы используем эти файлы для изучения алгоритма построения графика. Строим фрагмент синусоиды на промежутке [0; ] – открываю фрагмент (1).


Теперь пользуемся свойством нечетности (симметрия относительно т.О). Добавляю фрагмент (2). Имеем:


Используем свойство периодичности. Открываем фрагмент графика (3)…


… фрагмент (4).

Многие дети просят программы, чтобы поработать дома. В этом случае я на сайте гимназии даю ссылку на ресурс. Именно ссылку, а не "заливаю" программу на сайт, т.к. это является нарушением авторских прав автора ресурса.

Новые программные продукты – это подспорье учителя в работе. Но главное, использование на уроках компьютерных программ работает на формирование информационной, коммуникативной, образовательной компетентностей обучающихся. А это более весомо, чем просто хорошая наглядность. Главное, найти варианты, как применить эти продукты.

Другие материалы
Савченко Е.М. Мастер-класс «Использование презентаций PowerPoint на уроках геометрии».
Мастер-класс прошел в рамках международного семинара «Организация развивающего пространства в условиях интегрированного обучения детей: из опыта работы отдела образования г. Полярные Зори по реализации международного проекта «Приграничная гимназия».




© Савченко Е.М. 2009-2016